PURATHANE HARDENER ## **Urethane Coatings A division of Era Polymers Pty Ltd** Chemwatch Hazard Alert Code: 2 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Issue Date: 11/01/2022 Print Date: 11/01/2022 S.GHS.AUS.EN ## SECTION 1 Identification of the substance / mixture and of the company / undertaking ## **Product Identifier** | Product name | PURATHANE HARDENER | |--------------|--------------------| | Synonyms | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Hardener for PURATHANE timber, cork and parquetry finish. ## Details of the supplier of the safety data sheet | Registered company name | Era Polymers Pty Ltd | |-------------------------|--| | Address | 2 - 4 Green Street Banksmeadow NSW Australia | | Telephone | +61 (0) 2 9666 3888 | | Fax | +61 (0) 2 9666 4805 | | Website | www.urethanecoatings.com.au | | Email | sales@urethanecoatings.com.au | ## **Emergency telephone number** | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|------------------------------| | Emergency telephone numbers | +61 2 9186 1132 | | Other emergency telephone numbers | +61 1800 951 288 | Once connected and if the message is not in your prefered language then please dial 01 ## **SECTION 2 Hazards identification** ## Classification of the substance or mixture HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | S6 | |-------------------------------|--| | Classification ^[1] | Serious Eye Damage/Eye Irritation Category 2A, Acute Toxicity (Inhalation) Category 4, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | | ## Label elements ## Hazard pictogram(s) | Signal word | Mornin | |-------------|----------| | Signal word | - warnin | ## Hazard statement(s) | H319 | Causes serious eye irritation. | |------|--| | H332 | Harmful if inhaled. | | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | Version No: 2.3 Page 2 of 15 Issue Date: 11/01/2022 ## **PURATHANE HARDENER** Print Date: 11/01/2022 ## Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | | P103 | Read carefully and follow all instructions. | ## Precautionary statement(s) Prevention | P271 | Use only outdoors or in a well-ventilated area. | |------|--| | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P261 | Avoid breathing mist/vapours/spray. | | P273 | Avoid release to the environment. | | P264 | Wash all exposed external body areas thoroughly after handling. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | ## Precautionary statement(s) Response | P302+P352 | IF ON SKIN: Wash with plenty of water. | | |----------------|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | ## Precautionary statement(s) Storage Not Applicable ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** ## Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] | Name | | | |---------------|--|---|--|--| | 160994-68-3 | 50-70 | hexamethylene diisocyanate polymer, ethoxylated | | | | 111109-77-4 | 30-50 | dipropylene glycol dimethyl ether | | | | 112-07-2 | <10 | ethylene glycol monobutyl ether acetate | | | | Not Available | to 100 | All other substances - non-hazardous | | | | Legend: | Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | | ## **SECTION 4 First aid measures** ## Description of first aid measures | Eye Contact | If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. Version No: 2.3 Page 3 of 15 Issue Date: 11/01/2022 ## **PURATHANE HARDENER** Print Date: 11/01/2022 For acute or short term repeated exposures to ethylene glycol: - Early treatment of ingestion is important. Ensure emesis is satisfactory. - Test and correct for metabolic acidosis and hypocalcaemia. - Apply sustained diuresis when possible with hypertonic mannitol. - Evaluate renal status and begin haemodialysis if indicated. [I.L.O] - Rapid absorption is an indication that emesis or lavage is effective only in the first few hours. Cathartics and charcoal are generally not effective. - Correct acidosis, fluid/electrolyte balance and respiratory depression in the usual manner. Systemic acidosis (below 7.2) can be treated with intravenous sodium bicarbonate solution. - Ethanol therapy prolongs the half-life of ethylene glycol and reduces the formation of toxic metabolites. - Pyridoxine and thiamine are cofactors for ethylene glycol metabolism and should be given (50 to 100 mg respectively) intramuscularly, four times per day for 2 days. - Magnesium is also a cofactor and should be replenished. The status of 4-methylpyrazole, in the treatment regime, is still uncertain. For clearance of the material and its metabolites, haemodialysis is much superior to peritoneal dialysis [Ellenhorn and Barceloux: Medical Toxicology] It has been suggested that there is a need for establishing a new biological exposure limit before a workshift that is clearly below 100 mmol ethoxy-acetic acids per mole creatinine in morning urine of people occupationally exposed to ethylene glycol ethers. This arises from the finding that an increase in urinary stones may be associated with such exposures. Laitinen J., et al: Occupational & Environmental Medicine 1996; 53, 595-600 ## **SECTION 5 Firefighting measures** ## **Extinguishing media** - Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam. - Presents additional hazard when fire fighting in a confined space. - Cooling with flooding quantities of water reduces this risk - Water spray or fog may cause frothing and should be used in large quantities. - Foam - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. Advice for firefighters Water spray or fog - Large fires only. ## Special hazards arising from the substrate or mixture | F | ire | Incompat | ibility | |---|-----|----------|---------| | | | | | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may
result - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus - Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - Fire Fighting Avoid spraying water onto liquid pools - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. ## Polyurethane polymer is a combustible material which may be ignited if exposed to an open flame. Decomposition from fire can produce significant amounts of carbon monoxide and hydrogen cyanide, in addition to nitrogen oxides, isocyanates, and other toxic products. Because of the flammability of the material, it may to be treated with flame retardants, almost all of which are considered harmful. - Combustible. - Moderate fire hazard when exposed to heat or flame - When heated to high temperatures decomposes rapidly generating vapour which pressures and may then rupture containers with release of flammable and highly toxic isocyanate vapour. - Burns with acrid black smoke and poisonous fumes. - Due to reaction with water producing CO2-gas, a hazardous build-up of pressure could result if contaminated containers are re-sealed. #### Combustion yields traces of highly toxic hydrogen cyanide HCN, plus toxic nitrogen oxides NOx and carbon monoxide Combustion products include: Fire/Explosion Hazard carbon dioxide (CO2) isocvanates hydrogen cyanide and minor amounts of nitrogen oxides (NOx) other pyrolysis products typical of burning organic material When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur **HAZCHEM** Not Applicable ## **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up - Remove all ignition sources - Clean up all spills immediately. ## **Minor Spills** - Avoid breathing vapours and contact with skin and eyes. - ► Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite - ▶ Wipe up. Version No: **2.3** Page **4** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** Print Date: 11/01/2022 - Place in a suitable, labelled container for waste disposal. - Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus SCBA should be used inside encapsulating suit where this exposure may occur. For isocyanate spills of less than 40 litres (2 m2): - Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible. - Notify supervision and others as necessary. - Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots). - Control source of leakage (where applicable). - bullet Dike the spill to prevent spreading and to contain additions of decontaminating solution. - Prevent the material from entering drains. - Estimate spill pool volume or area - Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes - Shovel absorbent/decontaminant solution mixture into a steel drum. - Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. Completely cover decontaminant with vermiculite or other similar absorbent. After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above. - Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above - Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration. - ▶ Decontaminate and remove personal protective equipment. - Return to normal operation. - Conduct accident investigation and consider measures to prevent reoccurrence. #### Decontamination: Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ('neutralising fluid'). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone. Typically, such a preparation may consist of: Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}. #### **Major Spills** Let stand for 24 hours Three commonly used neutralising fluids each exhibit advantages in different situations. ## Formulation A: liquid surfactant 0.2-2% sodium carbonate 5-10% water to 100% Formulation B liquid surfactant 0.2-2% concentrated ammonia 3-8% water to 100% Formulation C ethanol, isopropanol or butanol 50% concentrated ammonia 5% water to 100% After application of any of these formulae, let stand for 24 hours. Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution. Moderate hazard. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - ▶ No smoking, naked lights or ignition sources. - Increase ventilation. - ► Stop leak if safe to do so. - ► Contain spill with sand, earth or vermiculite. - ▶ Collect recoverable product into labelled containers for recycling. - ▶ Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - ▶ If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** ## Precautions for safe handling Product is moisture sensitive; handle under a dry, inert gas. Nitrogen with less than 5 ppm each of moisture and oxygen is recommended The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe • DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION ## Safe handling - potential. - Any static discharge is also a source of hazard. Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through - Continued... Version No: **2.3** Page **5** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** Print Date: 11/01/2022 a column of activated alumina. - Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage. - Add inhibitor to any distillate as required. - When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely. The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example. Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised. - A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date. - The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date. - Unopened containers received from the supplier should be safe to store for 18 months. - Opened containers should not be stored for more than 12 months. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. -
Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. Consider storage under inert gas. for commercial quantities of isocyanates: - · Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis. - Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken. - · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).. - Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary. Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations. ## Other information - · Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection. - Store in original containers. - Keep containers securely sealed. - No smoking, naked lights or ignition sources. - ▶ Store in a cool, dry, well-ventilated area - ▶ Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## Conditions for safe storage, including any incompatibilities ## Suitable container - Metal can or drum - Packaging as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. Avoid contamination of water, foodstuffs, feed or seed. Dipropylene glycol monomethyl ether: - may form unstable peroxides on contact with air - reacts violently with strong oxidisers, permanganates, peroxides, ammonium persulfate, bromine dioxide, sulfuric acid, nitric acid, perchloric acid and other strong acids - ▶ is incompatible with acid halides, aliphatic amines, alkalis, boranes, isocyanates - attacks some plastics, rubber and coatings - Glycol ethers may form peroxides under certain conditions; the potential for peroxide formation is enhanced when these substances are used in processes such as distillation where they are concentrated or even evaporated to near-dryness or dryness; storage under a nitrogen atmosphere is recommended to minimise the possible formation of highly reactive peroxides ## Storage incompatibility - flash-point large containers may first need to be purged and inerted with nitrogen prior to loading In the presence of strong bases or the salts of strong bases, at elevated temperatures, the potential exists for runaway reactions. - Contact with aluminium should be avoided; release of hydrogen gas may result- glycol ethers will corrode scratched aluminium surfaces. Nitrogen blanketing is recommended if transported in containers at temperatures within 15 deg C of the flash-point and at or above the - May discolour in mild steel/ copper; lined containers, glass or stainless steel is preferred - ▶ Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. Investigation of the hazards associated with use of 2-butoxyethanol for alloy electropolishing showed that mixtures with 50-95% of acid at 20 deg C, or 40-90% at 75 C, were explosive and initiable by sparks. Sparking caused mixtures with 40-50% of acid to become explosive, but 30% solutions appeared safe under static conditions of temperature and concentration. Version No: 2.3 Page 6 of 15 Issue Date: 11/01/2022 ## **PURATHANE HARDENER** Print Date: 11/01/2022 - Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a di-isocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas. - · Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials. - · Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid. Isocyanates participate in Diels-Alder reactions, functioning as dienophiles - Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds. - · Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture. - Do NOT reseal container if contamination is expected - Open all containers with care - Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence. - Isocyanates will attack and embrittle some plastics and rubbers. - The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions. - A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol. - The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. - For example, in 'open vessel processes' (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in 'closed vessel processes' (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition - Keep dry - ▶ NOTE: May develop pressure in containers; open carefully. Vent periodically. ## SECTION 8 Exposure controls / personal protection ## **Control parameters** ## Occupational Exposure Limits (OEL) #### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---|-----------------------|-----------------------|-----------------------|------------------|------------------| | Australia Exposure Standards | ethylene glycol monobutyl ether acetate | 2-Butoxyethyl acetate | 20 ppm / 133
mg/m3 | 333 mg/m3 / 50
ppm | Not
Available | Not
Available | ## **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---|--------|--------|---------| | ethylene glycol monobutyl ether acetate | 15 ppm | 35 ppm | 210 ppm | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | hexamethylene diisocyanate polymer, ethoxylated | Not Available | Not Available | | dipropylene glycol dimethyl ether | Not Available | Not Available | | ethylene glycol monobutyl ether acetate | Not Available | Not Available | ## Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |---
--|----------------------------------| | hexamethylene diisocyanate polymer, ethoxylated | D | > 0.1 to ≤ 1 ppm | | dipropylene glycol dimethyl ether | E | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | ## Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Employers may need to use multiple types of controls to prevent employee overexposure. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. # Appropriate engineering controls General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: Version No: **2.3** Page **7** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** solvent, vapours, degreasing etc., evaporating from tank (in still air) aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|------------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood - local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. - All processes in which isocyanates are used should be enclosed wherever possible. - ▶ Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards. - If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed. - Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards. - Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Foraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations (AS/NZS 4114, UNI EN 12215:2010, ANSI/AIHA Z9.3–2007 or national equivalent). - Local exhaust ventilation with full face positive-pressure air supplied breathing apparatus (hood or helmet type) is required. - Foraying should be performed in a spray booth fitted with an effective exhaust system which complies with local environmental legislation. - ▶ The spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared. **NOTE**: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |--|----------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Personal protection ## . 0.00..... p. 0.00..... - ► Safety glasses with side shields - Chemical goggles. # Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in ## Eye and face protection Print Date: 11/01/2022 Version No: **2.3** Page **8** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** Print Date: 11/01/2022 a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] ## Skin protection See Hand protection below Wear general protective gloves, eg. light weight rubber gloves. The selection of suitable gloves does not only depend on the
material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Hands/feet protection - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ Do NOT wear natural rubber (latex gloves). - Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves. - Protective gloves and overalls should be worn as specified in the appropriate national standard. - Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated. - ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates - DO NOT use skin cream unless necessary and then use only minimum amount. Isocyanate vapour may be absorbed into skin cream and this increases hazard. - Body protection See Other protection below ess Em All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential. ## Other protection Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known. No special equipment needed when handling small quantities. ## OTHERWISE: - Overalls. - ► Barrier cream. - Eyewash unit. ## Recommended material(s) ## GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the $\ensuremath{\textit{computer-generated}}$ selection: PURATHANE HARDENER | Material | СРІ | |-------------------|-----| | NAT+NEOPR+NITRILE | С | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might ## Respiratory protection Full face respirator with supplied air. - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used For spraying or operations which might generate aerosols: Full face respirator with supplied air. In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard. Version No: 2.3 Page 9 of 15 Issue Date: 11/01/2022 ## **PURATHANE HARDENER** otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used. Print Date: 11/01/2022 - Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable. - Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected. - Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate. ## **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties | Appearance | Clear liquid | | | |--|------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.09 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available BuAC = 1 | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Reacts | pH as a solution (%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 |
------------------------------------|---| | Chemical stability | Product is considered stable and hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 Toxicological information** ## Information on toxicological effects The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. ## Inhaled Inhalation hazard is increased at higher temperatures. The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure Version No: 2.3 Page 10 of 15 Issue Date: 11/01/2022 ## **PURATHANE HARDENER** Print Date: 11/01/2022 or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures. Dipropylene glycol monomethyl ether (DPME) may cause drowsiness from which rapid recovery occurs, and in few cases brain and nerves impairment. Dipropylene monomethyl ether (DPME) produces marked central nervous system depression in rats. Lethal doses produced failure of breathing within 48 hours. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of Ingestion corroborating animal or human evidence High molecular weight material; on single acute exposure would be expected to pass through gastrointestinal tract with little change / absorption. Occasionally accumulation of the solid material within the alimentary tract may result in formation of a bezoar (concretion), producing discomfort. ## **Skin Contact** The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational settina. Toxic effects may result from skin absorption Continuous skin contact with DPME may cause scaly skin. Testing on animals has shown that absorption through the skin may cause drowsiness, stomach distension and irritation as well as kidney damage, and high doses may be lethal. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ## Eve Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Undiluted dipropylene glycol monomethyl ether (DPME) may cause eye irritation with redness, pain and sometimes physical injury. These are reversible and there is no permanent damage. Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Some glycol esters and their ethers cause wasting of the testicles, reproductive changes, infertility and changes to kidney function. Shorter chain compounds are more dangerous. The polymer this material contains and its functional group is of low concern. Blocked isocyanates have a group attached to them to reduce their reactivity compared to the unblocked version which is much more reactive. This product contains a polymer with a functional group considered to be of high concern. Isothiocyanates may cause hypersensitivity of the skin and airways Fully reacted polyurethane polymer is chemically inert. No exposure limits have been established in the U.S. by OSHA (Occupational Safety and Health Administration) or ACGIH (American Conference of Governmental Industrial Hygienists). It is not regulated by OSHA for carcinogenicity. Liquid resin blends containing residual isocyanates may contain hazardous or regulated components. Isocyanates are known skin and respiratory sensitizers. Additionally, amines, glycols, and phosphate present in spray polyurethane foams present risks. The oral administration of polyurethane particles at 5 and 10 mg/kg/day for 10 days generated an inflammation response in mice. There was increased visceral fat accumulation in the treated mice in all groups (2, 5, 10 mg/kg/d) compared to controls. The lungs of mice in the 5 and 10 mg/kg/day groups showed inflammation, and inflammatory infiltrate was observed in all treatment groups Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocvanates. The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components. ## Chronic This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment. It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas. - Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity - Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions. At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw). The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI.exposures. A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds: - ▶ via formation of a labile isocyanate glutathione (GSH)-adduct, - then transfer to a more stable adduct with larger proteins, and - without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood DMPE causes few adverse effects, although it has caused decreased consciousness in animal testing. It has an unpleasant odour. Animal testing shows that polymeric MDI can damage the nasal cavities and lungs, causing inflammation.and increased cell growth. ## **PURATHANE HARDENER** | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | ## hexamethylene diisocvanate polymer, ethoxylated | TOXICITY | IRRITATION | |---|---------------| | Oral (Rat) LD50; >2000 mg/kg ^[2] | Not Available | Version No: **2.3** Page **11** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** Print Date: 11/01/2022 | dipropylene glycol dimethyl | | |-----------------------------|--| | other | | | TOXICITY | IRRITATION | | |---|---------------|--| | dermal (rat) LD50: >2000 mg/kg ^[2] | Not Available | | | Oral (Rat) LD50; 3300 mg/kg ^[2] | | | ## ethylene glycol monobutyl ether acetate | TOXICITY | IRRITATION |
---|----------------------------------| | Dermal (rabbit) LD50: 1500 mg/kg ^[2] | Eye (rabbit): 500 mg/24hr - mild | | Oral (Rat) LD50; 2400 mg/kg ^[2] | Skin (rabbit): 500 mg - mild | #### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### * Coim SDS EX-7900 The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. No significant acute toxicological data identified in literature search. ## HEXAMETHYLENE DIISOCYANATE POLYMER, ETHOXYLATED Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. ## DIPROPYLENE GLYCOL DIMETHYL ETHER In vitro mutagenicity studies were negative; animal mutagencity studies were negative * Dow MSDS ## mae For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal tract. Limited information suggests that it is also absorbed through the airways; absorption through skin is apparently slow. Following absorption, it is distributed throughout the body. In humans, it is initially metabolized by alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic acid and glyoxal. These breakdown products are oxidized to glyoxylate, which may be further metabolized to formic acid, oxalic acid, and glycine. Breakdown of both glycine and formic acid can generate carbon dioxide, which is one of the major elimination products of ethylene glycol. In addition to exhaled carbon dioxide, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination is rapid and occurs within a few hours. Respiratory effects: Respiratory system involvement occurs 12-24 hours after swallowing sufficient amounts of ethylene glycol. Symptoms include hyperventilation, shallow rapid breathing, and generalized swelling of the lungs with calcium oxalate deposits occasionally appearing in the lungs. Respiratory system involvement appears to be dose-dependent and occurs at the same time as cardiovascular changes. Later, there may be other changes compatible with adult respiratory distress syndrome (ARDS). Swelling of the lung can be a result of heart failure, ARDS, or aspiration of stomach contents. Symptoms related to acidosis such as fast or excessive breathing are frequently observed; however, major symptoms such as swelling of the lung and inflammation of the bronchi and lungs are relatively rare, and are usually seen only in extreme poisoning. ## ETHYLENE GLYCOL MONOBUTYL ETHER ACETATE Cardiovascular effects: Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of ethylene glycol poisoning by swallowing, which is 12-24 hours after acute exposure. The symptoms of poisoning involving the heart include increased heart rate, heart enlargement and ventricular gallop. There may also be high or low blood pressure, which may progress to cardiogenic shock. In lethal cases, inflammation of the heart muscle has been observed at autopsy. Cardiovascular involvement appears to be rare and usually seen after swallowing higher doses of ethylene glycol. In summary, acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown. Gastrointestinal effects: Common early acute effects of swallowing ethylene glycol include nausea, vomiting with or without blood, heartburn and abdominal cramping and pain. One patient showed intermittent diarrhea and pain, and after surgery, deposition of oxalate crystals was shown to have occurred. Musculoskeletal effects: Reported musculoskeletal effects in cases of acute ethylene glycol poisoning include diffuse muscle tenderness and pain, associated with high levels of creatinine in the blood, and jerks and contractions associated with low calcium. Liver effects: Autopsies carried out on people who died following acute ethylene glycol poisoning showed deposition of calcium oxalate in the liver as well as hydropic and fatty degeneration and cell death (necrosis) of the liver. Kidney effects: Adverse kidney effects are seen during the third stage of ethylene glycol poisoning, 2-3 days after acute exposure. Calcium oxalate crystals are deposited in the tubules and are seen in the urine. There may also be degeneration and death of tubule cells, and inflammation of the tubule interstitium. If untreated, the degree of kidney damage progresses and leads to blood and protein in the urine, decreased kidney function, reduction in urine output and ultimately, kidney failure. With adequate supportive therapy, kidney function can return to normal or near normal. Metabolic effects: Metabolic changes can occur within 12 hours of exposure to ethylene glycol. There may be metabolic acidosis, caused by accumulation of glycolic acid in the blood and therefore a reduction in blood pH. The anion gap is increased, due to increased unmeasured anions (mainly glycolate). Effects on the nervous system: Adverse reactions involving the nervous system are among the first symptoms to appear in humans after ethylene glycol is swallowed. These early effects are also the only symptoms caused by unmetabolised ethylene glycol. Together with metabolic effects (see above), they occur from 0.5-12 hours after exposure and are considered to be part of the first stage in ethylene glycol poisoning. Inco-ordination, slurred speech, confusion and sleepiness are common in the early stages, as are irritation, restlessness and disorientation. Later, there may be effects on cranial nerves (which may be reversible over many months). Swelling of the brain (cerebrum) and crystal deposits of calcium oxalate in the walls of the small blood vessels of the brain were found at autopsy in people who died after acute ethylene glycol poisoning. Version No: **2.3** Page **12** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** Print Date: 11/01/2022 Reproductive effects: Animal testing showed that ethylene glycol may affect fertility, survival of fetuses and the male reproductive organs. Effects on development: Animal studies indicate that birth defects may occur after exposure in pregnancy; there may also be reduction in foetal weight. Cancer: No studies are known regarding cancer effects in humans or animal, after skin exposure to ethylene glycol. Genetic toxicity: No human studies available, but animal testing results are consistently negative. For ethylene glycol monoalkyl ethers and their acetates (EGMAEs): Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates. EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary
metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolysis. Although decreased blood haemoglobin and/or haemoglobinuria were observed in some of the human cases, it is not clear if this was due to toxicity from EGPE and EGBE in vitro than those of rats. Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA *in vitro* and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pigs, dogs, cats, and guinea pigs was less sensitive to haemolysis by BAA *in vitro*. Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in *S. typhimurium* strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. *In vitro* cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic. Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode of action data available, there was no significant hazard for human carcinogenicity Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes). Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic. The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE). For propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain homologues in the ethylene series are not associated with reproductive toxicity, but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolized in the body. As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization. Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been shown to cause birth defects. Available instance indicates that propylene glycol ethers are unlikely to possess genetic toxicity. # PURATHANE HARDENER & HEXAMETHYLENE DIISOCYANATE POLYMER, ETHOXYLATED **PURATHANE HARDENER &** DIPROPYLENE GLYCOL DIMETHYL ETHER Isocyanate vapours are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination, anxiety, depression and paranoia. DIPROPYLENE GLYCOL DIMETHYL ETHER & ETHYLENE GLYCOL MONOBUTYL ETHER ACETATE The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. | Acute Toxicity | ~ | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 💢 – Data either not available or does not fill the criteria for classification – Data available to make classification Version No: **2.3** Page **13** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** Print Date: 11/01/2022 ## **SECTION 12 Ecological information** #### Toxicity | PURATHANE HARDENER | Endpoint | | Test Duration (hr) | | Species | Value | | Source | | | |--|---------------|---------------|--------------------|------------------------------------|---------------|---------------|-------------|---------------|---------|--| | FORATIANE HARDENER | Not Available | Not Available | | | Not Available | Not Available | | Not Available | | | | examethylene diisocyanate | Endpoint | | Test Duration (hr) | | Species | Value | | Source | | | | polymer, ethoxylated | Not Available | | Not Available | | Not Available | Not Available | | | ailable | | | | Endpoint | Tes | t Duration (hr) | Spec | ies | | Value | | Source | | | dipropylene glycol dimethyl
ether | NOEC(ECx) | 504 | · , | Crustacea | | 10mg/l | | 2 | | | | | LC50 | 96h | 96h F | | Fish | | 106-111mg/l | | 2 | | | | EC50 | 72h | l | Algae or other aquatic plants 1746 | | 1746mg/l | | 2 | | | | | Endpoint | Test | Duration (hr) | Speci | ies | | Value | | Source | | | | EC10(ECx) | 48h | | Crustacea | | 6.9mg/l | | 2 | | | | ethylene glycol monobutyl
ether acetate | EC50 | 72h | | Algae or other aquatic plants | | >500mg/l | | 1 | | | | etner acetate | LC50 | 96h | | Fish | | >20<40mg/l | | 2 | | | | | EC50 | 48h | | Crusta | acea | | 37mg/l | | 1 | | For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Environmental Fate: Most are liquids at room temperature and all are water-soluble. Atmospheric Fate: In air, the half-life due to direct reactions with photochemically generated
hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are 'readily biodegradable' under aerobic conditions. In soil, biodegradation is rapid for PM and PMA. Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For high molecular weight synthetic polymers: (according to the Sustainable Futures (SF) program (U.S. EPA 2005b; U.S. EPA 2012c) polymer assessment guidance.) High MW polymers are expected: - $\boldsymbol{\cdot}$ $\boldsymbol{\cdot}$ to have low vapour pressure and are not expected to undergo volatilization . - to adsorb strongly to soil and sediment - to be non-biodegradable (not anticipated to be assimilated by microorganisms.- therefore, biodegradation is not expected to be an important removal process. However many exceptions exist High MW polymers are not expected to undergo removal by other degradative processes under environmental conditions for polyisocyanates: Polyisocyanates are not readily biodegradable. However, due to other elimination mechanisms (hydrolysis, adsorption), long retention times in water are not to be expected. The resulting polyurea is more or less inert and, due to its molecular size, not bioavailable. Within the limits of water solubility, polyisocyanates have a low to moderate toxicity for aquatic organisms. For Isocyanate Monomers: Environmental Fate: Isocyanates, (di- and polyfunctional isocyanates), are commonly used to make various polymers, such as polyurethanes. Polyurethanes find significant application in the manufacture of rigid and flexible foams. They are also used in the production of adhesives, elastomers, and coatings. Atmospheric Fate: These substances are not expected to be removed from the air via precipitation washout or dry deposition. Terrestrial Fate: These substances are expected to sorb strongly to soil. Migration to groundwater and surface waters is not expected to occur. Aquatic Fate: Breakdown by water, (hydrolysis), is the primary fate mechanism for the majority of commercial isocyanate monomers, however; the low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates. These substances strongly sorb to suspended particulates in water. In the absence of hydrolysis, sorption to solids, (e.g., sludge and sediments), will be the primary mechanism of removal. Biological breakdown is minimal for most compounds and evaporation is negligible. Evaporation from surface water is expected to take years. In wastewater treatment this process is not expected to be significant. Isocyanates will react with water producing carbon dioxide and forming a solid mass, which is insoluble. Biodegradation: Breakdown of these substances in oxygenated and low oxygen environments is not expected to occur. Most of the substances take several months to degrade. Degradation of the hydrolysis products will occur at varying rates. Ecotoxicity: These substances are not expected to accumulate/biomagnify in the environment. These substances are toxic if inhaled. These substances are harmful to aquatic organisms and may cause long-term adverse effects in the aquatic environment. ## For Glycol Ethers: Environmental Fate: Several glycol ethers have been shown to biodegrade however; biodegradation slows as molecular weight increases. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Atmospheric Fate: Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photo-degradation (atmospheric half lives = 2.4-2.5 hr). Aquatic Fate: In water, glycol ethers undergo biodegradation (typically 47-92% after 8-21 days) and have a low potential for bioaccumulation (log Kow ranges from -1.73 to +0.51). Ecotoxicity: Tri- and tetra ethylene glycol ethers are 'practically non-toxic' to aquatic species. No major differences are observed in the order of toxicity going from the methyl- to the butyl ethers. Glycols exert a high oxygen demand for decomposition and once released to the environment death of aquatic organisms occurs if dissolved oxygen is depleted. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-------------------------|------------------| | dipropylene glycol dimethyl ether | HIGH | HIGH | | ethylene glycol monobutyl ether acetate | LOW | LOW | Version No: 2.3 Page 14 of 15 Issue Date: 11/01/2022 Print Date: 11/01/2022 Print Date: 11/01/2022 ## **PURATHANE HARDENER** | Ingredient | Bioaccumulation | |---|-----------------------| | dipropylene glycol dimethyl ether | LOW (LogKOW = 0.3534) | | ethylene glycol monobutyl ether acetate | LOW (BCF = 3.2) | ## Mobility in soil | Ingredient | Mobility | |---|----------------| | dipropylene glycol dimethyl ether | LOW (KOC = 10) | | ethylene glycol monobutyl ether acetate | LOW (KOC = 10) | ## **SECTION 13 Disposal considerations** ## Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - ▶ Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been ## Product / Packaging disposal - appropriate. DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - DO NOT recycle spilled material. - Consult State Land Waste Management Authority for disposal. - Neutralise spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal. - DO NOT seal or stopper drums being decontaminated as CO2 gas is generated and may pressurise containers. - Puncture containers to prevent re-use. - ▶ Bury or incinerate residues at an approved site. ## **SECTION 14 Transport information** ## Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---|---------------| | hexamethylene diisocyanate polymer, ethoxylated | Not Available | | dipropylene glycol dimethyl ether | Not Available | | ethylene glycol monobutyl ether acetate | Not Available | | All other substances - non-hazardous | Not Available | ## Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |---|---------------| | hexamethylene diisocyanate polymer, ethoxylated | Not Available | | dipropylene glycol dimethyl ether | Not Available | | ethylene glycol monobutyl ether acetate | Not Available | | All other substances - non-hazardous | Not Available | Version No: **2.3** Page **15** of **15** Issue Date: **11/01/2022** ## **PURATHANE HARDENER** Print Date: 11/01/2022 ## **SECTION 15 Regulatory information** Safety, health and environmental regulations / legislation specific for the substance or mixture hexamethylene diisocyanate polymer, ethoxylated is found on the following regulatory lists Not Applicable dipropylene glycol dimethyl ether is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) ethylene glycol monobutyl ether acetate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) ## **SECTION 16 Other information** | Revision Date | 11/01/2022 | |---------------|------------| | Initial Date | 08/12/2016 | ## **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------
--| | 1.3 | 11/01/2022 | Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Appearance, Chronic Health, Classification, Disposal, Engineering Control, Environmental, Exposure Standard, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), First Aid (eye), First Aid (inhaled), First Aid (skin), First Aid (swallowed), Handling Procedure, Ingredients, Instability Condition, Personal Protection (other), Personal Protection (Respirator), Personal Protection (eye), Personal Protection (hands/feet), Spills (major), Storage (storage incompatibility), Storage (storage requirement), Transport Information | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances